#include <MOIndividual.h>


Public Member Functions | |
| ClassificationMOIndividual () | |
| ClassificationMOIndividual (const ClassificationMOIndividual &) | |
| ClassificationMOIndividual (const ClassificationMOIndividual &, bool tf) | |
| virtual | ~ClassificationMOIndividual () |
| bool | classify () |
| void | evaluate (const u_short &user_param=eval_type(0), const size_t pop_age=0) |
| std::vector< double > | calculateFitness (const size_t pop_age=0) |
| void | reset () |
| std::string | toString () const |
Static Public Member Functions | |
| static u_short | solutionSize () |
Public Attributes | |
| u_int | TP |
| u_int | FN |
| u_int | FP |
| u_int | TN |
| bool | zero_output |
Static Public Attributes | |
| static double | roundingThreshold = 0.5 |
| GEP::ClassificationMOIndividual::ClassificationMOIndividual | ( | ) |
Default constructor
| GEP::ClassificationMOIndividual::ClassificationMOIndividual | ( | const ClassificationMOIndividual & | copy | ) |
Copy constructor
| GEP::ClassificationMOIndividual::ClassificationMOIndividual | ( | const ClassificationMOIndividual & | , | |
| bool | tf | |||
| ) |
Half-copy constructor
| virtual GEP::ClassificationMOIndividual::~ClassificationMOIndividual | ( | ) | [inline, virtual] |
Default destructor
| std::vector< double > GEP::ClassificationMOIndividual::calculateFitness | ( | const size_t | pop_age = 0 |
) | [virtual] |
| bool GEP::ClassificationMOIndividual::classify | ( | ) |
Classification uses rounding threshold to obtain predicted result (0 or 1) (see evaluate()).
| void GEP::ClassificationMOIndividual::evaluate | ( | const u_short & | user_param = eval_type(0), |
|
| const size_t | pop_age = 0 | |||
| ) | [virtual] |
Evaluation uses classify() output which is then compared with actual output passed in user_param (actual).
if (_chromosome.getValue() < roundingThreshold) predicted = 0; else predicted 1; if(actual == 0) { //Positive if(predicted == 1) FP++; else TP++; } else { //Negative if(predicted == 1) TN++; else FN++; }
Reimplemented from GEP::Individual< std::vector< double >, double, u_short >.
| void GEP::ClassificationMOIndividual::reset | ( | ) | [virtual] |
Resets values used for fitness calculation.
Reimplemented from GEP::Individual< std::vector< double >, double, u_short >.
| static u_short GEP::ClassificationMOIndividual::solutionSize | ( | ) | [inline, static] |
Reimplemented from GEP::MOIndividual< double, double, u_short >.
| std::string GEP::ClassificationMOIndividual::toString | ( | ) | const [inline, virtual] |
Reimplemented from GEP::MOIndividual< double, double, u_short >.
Number of False Negatives
Number of False Positives
double GEP::ClassificationMOIndividual::roundingThreshold = 0.5 [static] |
Used for real - valued binary classification
Number of True Negatives
Number of True Positives
Adjustment to find classifiers making zero of all given data samples... in case of logicals may be troublesome
1.6.1